
Bangladesh University of Engineering and Technology (BUET) Department of Computer Science and Engineering (CSE)

**CSE 210** Digital Electronics and Pulse Techniques Sessional

# Experiment# 7: Study of Schmitt Triggers

#### **CKT** diagrams: $R_2$ $R_{2}$ $R_1$ $R_1$ $V_{\rm in}$ $\circ$ $V_{\rm out}$ $V_{\rm out}$ Fig. 1: Non-inverting Schmitt Trigger Fig. 2: Inverting Schmitt Trigger $R_2$ offset null 1 8 nłc $R_1$ inv. input 2 7 ٧. $R_3$ Vin • output inv. input 3-Vout 5 offset null $\mathbb{Z}_1$ $R_4$ $\mathbb{Z}_2$

Fig. 3: Practically used Schmitt Trigger



# **Apparatus:**

- 1. Op-Amp 741 (1pc; Set V+ = +5V and V- = -5V following Fig. 4)
- 2. Resistor (4 pcs;  $R_1 = 1K\Omega$ ,  $R_2 = 2K\Omega$ ,  $R_3 = 10K\Omega$ , and  $R_4 = 10K\Omega$ )
- 3. Zener diodes (2 pcs;  $Z_1 = 2.7V$  and  $Z_2 = 3.3V$ )

# **Procedure:**

For all figures –

- 1. Slowly increase the input from 0V and observe the output in the oscilloscope. Record the value of V<sub>in</sub> for which the output changes.
- 2. Slowly decrease the input to 0V and observe the output in the oscilloscope. Record the value of V<sub>in</sub> for which the output changes.
- 3. Apply sine wave (10V p-p 50 Hz) as input and observe the output in the oscilloscope.

# **Question:**

- Why the designs in Fig. 1 and Fig. 2 are not generally used in real circuits?
  Why R<sub>3</sub> and R<sub>4</sub> are used in Fig. 3?
- 3. What is the purpose of using  $Z_1$  and  $Z_2$  in Fig. 3?

# **Report:**

Report should cover the following points:

- 1. Objective
- 2. Circuit diagram and input-output wave shapes
- 3. Answer to the questions
- 4. Discussion of the findings
- 5. Applications of your study